Impact of Fabricated Coral Shell Hydroxyapatite Powder and Autologous Plasma Rich- fibrin in Remodeling of the Mandibular Bone Critical Size Defect in Dogs: Histopathological and Immunohistochemical Study

Ali Ghazi Atiyah¹ and Alkattan L.M²*
¹Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Tikrit, Iraq
²Department of Surgery and Theriogenology, College of Vet., Med., University of Mosul, Iraq
*Corresponding Author: Alkattan L.M., E-Mail: laythalkattan@uomosul.edu.iq

ABSTRACT
Histopathological and immunohistochemical assessment of fabricated coral shell hydroxyapatite (CSHA) and plasma rich fibrin (PRF) in remodeling of the induced critical size defect of the mandibular bone in the dogs: Twenty-seven adult dogs of both sexes were included and equally divided into three equal groups: control, plasma-rich fibrin (PRF) and hydroxyapatite group (CSHA). The experimental mandibular bone defect was induced in a circular shape, and the dimensions of the defect were 14x5mm. Evaluation of the healing progress of the defect and associated macroscopical, histopathological, and Immunohistological findings was recorded in all studied groups at 7, 15, and 30 days post-operatively. Macroscopically, the healing was evaluated by the presence of new bone tissue filling the bone gap defect in all groups during different follow-up periods. In the plasma-rich fibrin (PRF) group, the gap was highly filled with hard, firm tissues that filled all borders and the centre of the induced gap in comparison with the coral shell hydroxyl apatite group (CSHA), which is partially filled with hard tissue. Histopathologically, the progress of healing in the PRF group was represented by the presence of highly mature connective tissue and new woven bone formation at seven days and well-developed mature bone inside defective bone at 15 and 30 days post-operatively, whereas in the CSHA group, the results were represented by the occlusion of highly mature connective tissue and new woven bone formation inside the induced hole at 15 and 30 days post-operatively. At 30 days post-surgery, in the control group, there was the presence of newly formed woven bone surrounded by the edge of the mandible bone. The immunohistochemical expression of the alkaline phosphatase (ALP) in the mandible bone at 30 days PS in the control group was represented by weak positive expression, while mild positive expression was indicated in the CSHA group and moderate positive expression in the PRF group. In conclusion, this research exhibited the role of both CSHA and PRF in improving the healing process of defective mandible bones, with a clear superiority of the beneficial value of using PRF. The histopathological and immunohistochemistry assessments emphasize these results.

Keywords: Coral shell, Dog, Immunohistochemistry, Mandibular defect, PRF.

INTRODUCTION
Maxillofacial defects are a challenge for many surgeons and may be traumatic, congenital, neoplastic, or iatrogenic, such as cancer ablation (Kalantar and Khorvash, 2006). A critical-size bone defect refers to a bone defect that cannot heal spontaneously during an expected time of normal bone healing (Jin et al., 2005). The animal life period in most research depends upon the end of the study; a critical-size bone defect is also determined as the smallest size of a fracture defect that does not spontaneously heal without treatment in a particular lifetime (Marei et al., 2007). Biomaterials have a crucial role in repairing bone defects by providing the essential matrix for the differentiation and proliferation of bone cells and improving cell function (Gao et al., 2017). They are also termed bone substitutes (Shadjou and Hasanzadeh, 2015). The perfect bone substitute biomaterials should be safe, non-carcinogenic, and non-inflammatory or immune rejection response, with minimal fibrosis (Abdulghani and Mitchell, 2019). Recently, there has been a
growing need for bone substitutes as bioactive agents, which must produce essential properties for tissue integrity, such as bioactivity, biocompatibility, and biodegradability (Haugen et al., 2019). Various osteogenic bioactive agents are accessible for reconstructing mandibular defects in aesthetic surgery. Critical-size bone defects serve as an excellent model for evaluating the efficacy of treatments because regeneration of bone in a critical bone defect solely takes place in the presence of an osteogenic bioactive agent. (Huh et al., 2005).

Many kinds of bone substitutes were practically used to reconstitute different types of bone defects, such as processed ribs of lamb in repairing the critical size of tibial bone in dogs (Felipe et al., 2020; Mohammed et al., 2022); processed carp shell (Atiyh, 2018); and processed waste eggshell (Zebon et al., 2020). PFR, termed bioactive materials, is used as a surgical supplement to various surgical operations such as reconstruction of induced radial bone fractures in dogs (Mohammed et al., 2023), repairing abdominal hernias in rams (Zedan et al., 2022) for acceleration, and improving bone tissue regeneration and wound healing processes (Chandran, and Sivadas, 2014). PRF is a natural bioactive scaffold formed after tissue damage. It supplies the initial valuable matrix for cell adhesion, remodelling properties, tissue differentiation, and proliferation (Allawi et al., 2019; Zedan et al., 2023).

Recently, platelet-rich fibrin (PRF) was used in oral surgery for both humans and dogs to promote tissue healing and regeneration. (Tambella et al., 2020). The objective of this work is to assess the histopathological and immunohistochemical properties of fabricated coral shell hydroxyapatite and plasma-rich fibrin in remodelling the defect-induced mandibular bone in dogs.

MATERIALS AND METHODS

Animals and study design

This study was approved by the ethical committee at the Faculty of Veterinary Medicine, Mosul University, Iraq (UM.VET.2022.050). All dogs were treated following guidelines established by the international and institutional Animal Care and Use Committees.

Twenty-seven healthy adult Mongrel-intact dogs of both sexes were included in the present study. The mean age enrolled was 1.6±0.4 years and weighed 18 ± 0.8kg, respectively. Before inclusion, all dogs underwent a complete physical and clinical examination to ensure that they were completely healthy and free from infectious, contagious, or musculoskeletal diseases. All dogs underwent the same management conditions, including accommodation, feeding, and housing, at the Veterinary Medicine College/University of Mosul during the period of research from December 2022 to October 2023.

The animals were divided randomly into two equal groups of nine dogs each, according to the following:

Group 1: Only induced critical size of the mandibular defective gap without any treatment and considered as the Control group.

Group 2: Induced critical size of mandibular defective gap treated with fabricated coral shell hydroxyapatite (CSHA).

Group 3: Induced critical size of mandibular defective gap treated with prepared PRF.

Induction of a critical size defect in the mandibular bone

A critical-size bone defect was carried out under general anesthesia. The enrolled dogs were routinely pre-medicated with 0.04 mg/kg Atropine Sulphate (Atrovap, Vapco, Jordan) given subcutaneously and anesthetized with a mixture of (5 mg/kg) 2% Xylazine HCL (Interchemie, Holland) and (10 mg/kg) 10% ketamine HCL (Alfasan, Holland) given intramuscularly in one syringe (Alkattan and Helal, 2013). The mandibular bone defect was induced experimentally in a circular shape with dimensions of 14 × 5 mm, respectively. In the first group, the mandible bone defect was lifted without treatment, and the subcutaneous skin was then closed routinely. In the second group (CSHA), the defect was reconstructed by using fabricated hydroxyapatite powder from the coral shell through the hydrothermal method. This powder was applied directly through the mandible bone defect, and then the subcutaneous and skin were closed routinely. In the third group (PRF), the defect was repaired by using prepared plasma-rich fibrin as a filling material, which was applied directly through the mandible bone defect. Then the subcutaneous and skin were closed routinely (Fig.1). Histopathological and immunohistological investigations were studied (7, 15, and 30 days).

Fig.1: Image shown induced mandibular defect A: control group. B: treatment group with fabricated coral shell hydroxyapatite powder group. C, treatment group with prepared PRF group.
PRF preparation

The PRF was prepared according to (Gobbi), 10 ml of blood was collected from the dog's jugular vein, and then the blood sample was centrifuged at 3000 rpm for 10 min to obtain mid layer containing PRF matrix, this homogenous matrix was obtained and applied directly at the previously induced defect (Gobbi and Vitale, 2012).

Fabrication of hydroxyapatite powder from coral shell

The coral shells (Pectinidae) were collected from a local market in Basra Province, Iraq, and underwent a thorough cleaning process using distilled water. Subsequently, they were subjected to boiling in a mixture of distilled water and 70% ethanol to eliminate any residues, followed by drying in a hot air oven at 100 °C for 30 minutes. Once dried, the shells were finely ground into a powder utilizing an electrical mortar grinder (Retsch, RM200, China) (Roudana et al., 2017). The obtained powder underwent calcination in a muffle furnace (Nabertherm, Germany) at 1200 °C for 2 hours, yielding calcium hydroxide Ca(OH)2 powder. To further process the calcium hydroxide, an orthophosphoric acid solution (Ridel, Turkey) with a 0.6-molar concentration was introduced into the Ca(OH)2 solution. The pH of the reaction was meticulously adjusted to 8.5 using a pH meter. In this step, a white and homogeneous precipitate was formed. The product was left at room temperature for 48 hours to allow the reaction to age. Followed by drying precipitation, underwent a second round of calcination at 1200°C for 2 hours. The outcome was a fine white crystalline powder, confirming the presence of hydroxyapatite (HA) crystal powder, as illustrated in Fig. 2.

![Fig.2: Image represented fabricated coral shell hydroxyapatite powder.](image)

Tissue collection and processing

The samples were collected from healthy and treated bone tissues in an aseptic condition. The method included using 10% neutral buffered formalin (NBF) for 72 hours to fixate the sample; the bone biopsies were decalcified by using a 10% formic acid solution for 14 days, and then the sample was embedded in paraffin wax. All the samples were sliced into 5μm using a microtome, then subsequently counterstained with hematoxylin and eosin (Survana et al., 2013).

Immunohistochemistry (IHC) analysis

The tissue sections underwent deparaffinization, rehydration, and deactivation, and then the immunohistochemistry method used was the avidin-biotin immunoperoxidase technique. Endogenous peroxidase was blocked by a mixture of 3% hydrogen peroxide and methanol solution for 7 minutes at ambient temperature. After washing with PBS containing 0.01% thiomersal and 50% glycerol at pH 7.3, the sample was blocked with 10% normal goat serum for 30–40 minutes at ambient temperature.

Then, the slides were incubated with primary antibodies, which are Alkaline Phosphatase (ALP) Polyclonal Antibody at a 1:100 dilution (Elabscience, USA) for 24 hours at 4 °C, followed by double -imes washing oof theslides with PBS for three minutes, then incubated with poly-HRP goat anti-rabbit IgG as a secondary antibody with a dilution of 1:400 (Wuhan Fine Biotech, China) for 30 minutes at room temperature, and finally washed again with PBS. Then, the stain was performed using the DAB system. Later, all slides were allowed to be counterstained with nuclei with hematoxylin for 30 seconds at room temperature, rinsed in distal water, then dehydrated, cleared, and mounted (Hoshi et al., 1997).

RESULTS

The macroscopic results indicated the presence of the new bone tissue formation filled the defective areas in all groups in several respects during different periods of treatment especially at 30 days post-surgery, so in the control group, the healing was represented by the presence of fibrous tissue rather than bone tissue. Generally, more new bone tissue represented the healing process way could be observed in the PRF group, which is highly filled with hard firm tissues that filled all borders and centers of the experimentally induced gap, in comparison with the CSHA groups, which are partially filled with hard tissue (Fig.3).
Fig. 3: The progressing macroscopical healing process in control, CSHA, and PRF groups.

Fig. 4: Histopathological section in the control group at 7 days, showing the site of hole (↔) with severe hemorrhage or blood clot (black arrow), surrounding by granulation tissue (red arrow) and the edge of the mandible bone (yellow arrow). H&E stain, 100X.

The histopathological evaluation in the control group at seven days showed the site operation had soft tissue reactions represented by severe haemorrhage with the blood clot, surrounded by a large area of granulation tissue that separated from the edge of the normal mandible bone (Fig. 4). At 15 days post-surgery, the results exhibited haemorrhage occlusion inside the induced hole, mature connective tissue formation, and new woven bone with newly formed blood vessels (Fig 5). At 30 days after surgery, the result showed that the defective area was filled with mature connective tissue rich in vascularity, and a small amount of newly formed woven bone surrounded the edge of the mandible bone defect (Fig. 6).

Fig. 5: Histopathological image of the control group at 15 days, showing the site of the hole (↔) occluded with hemorrhage (black arrow), highly granulation tissue with high connective tissue (red arrow), and new woven bone (yellow arrow). H&E stain, 40X.

Fig. 6: histopathological image of the control group at 30 days, showing the site of hole (↔) occluded by highly mature connective tissue (black arrow) and formation of new woven bone (red arrow), with the edge of the mandible bone (yellow arrow). H&E stain, 40X.

The histological section of the mandible bone defect in the CSHA group at seven days showed the site of a hole surrounded by highly mature connective tissue and a highly new woven bone formation with high vasculature at the edge of the mandible bone (Fig. 7).
At 15 days after surgery, the histopathological observations of the mandibular bone defect of the CSHA group showed the site of the hole partially occluded by highly mature connective tissue, and the new woven bone formation extended from the defect margins towards the center, with the edge of the mandible bone (Fig. 8).

At 30 days after surgery, the histopathological observations of the CSHA group showed the site of the hole occluded by highly mature connective tissue with high vasculature and well-developed new woven bone formation with the edge of the mandible bone (Fig. 9). In the PRF group, at seven days, the site of the hole with the remaining PRF was surrounded by highly mature connective tissue, new woven bone formation, and the edge of the mandible bone (Fig. 10).

At 15 days after surgery, there was also remaining PRF at the site of the hole, occluded by mature connective tissue, immature bone formation, and mature bone (Fig. 11). At 30 days after surgery, there was immature bone formation and well-developed mature bone inside the site of the defect (Fig. 12).
Ali Ghazi Atiyah and Alkattan L.M.

Fig. 11: Histopathological image of the PRF group at 15 days reveals the site of the hole (↔) with the rest of PRF (black arrow), occluded by mature connective tissue (black arrow) immature bone formation (red arrow), and mature bone (yellow arrow), H&E, 40X.

Fig. 12: Histopathological image of the PRF group at 30 days reveals the site of the hole (↔) occluded by immature bone formation (black arrow) and well-developed mature bone (red arrow), with the edge of the mandible bone (yellow arrow). H&E stain, 40X.

Immunohistochemistry

The immunohistochemical expression of the alkaline phosphatase in the mandible bone at 30 days after operation in the control group illustrated a weak positive expression (Fig. 13). In the CSHA group, there was a mild positive expression (Fig. 14). While the PRF group showed a moderately positive expression (Fig. 15).

DISCUSSION

In this study, the surgical wounds were healed with the first intention in all groups without any signs of swelling, wound exudation, infection, or dehiscence. Therefore, we suggested that the lateral surgical approach of the mandibular bone used in this study be considered surgically under aseptic conditions and suitable for rapid exposure to the lateral border of the mandibular bone with minimal soft tissue trauma; therefore, this outcome agrees with the recent study that reported the lateral approach to the mandible in the dog was associated with fewer wound-related complications (Cinti et al., 2021). Excessive new bone tissue in a progressing way could be visually observed in the PRF group, which is extremely filled with hard, firm tissues that filled all borders and centers of the experimentally induced gap, in comparison with the CSHA groups and control group, which are partially filled with hard tissue, and based on these outcomes, it was concluded that all bioactive materials were used in the present study to improve and enhance bone tissue formation in different clinical conditions. Therefore, our macroscopical findings agreed with previous observations that considered the use of bone substitute biomaterials stimulated osteoblast proliferation and can induce the formation of new bone with no immunological or inflammatory reaction to the bioactive material implanted in the critical-size defect gaps, and this agent has biocompatible properties (Zhang et al., 2019; Hussein and Taqa, 2021).

As a result, histopathological sections in all groups have shown no obvious signs of tissue necrosis or abnormal cellular activity (such as distraction of osteocytes) in the bone defective area, which indicated
that no thermal production or bone crack damage occurred during the drilling force. Furthermore, osteocytes, known as the cells that sense mechanical strain in the bone matrix, are very sensitive to it. The typical appearance of osteocytes within the lacune in the native bone margin also indicated mechanically loaded force was absent in the bone during the drilling technique (Alam et al., 2019). Also, our histopathological investigations revealed that the mandibular bone defects healed represented by endochondral rather than intramembranous bone formation because the presence of cartilage template was observed; this result was following the previous study by Komatsu et al. (2009), which illustrated that the histology of the drill bone defect models was initiated with intramembranous ossification rather than formation of the cartilage template, due to the mechanical stability of the gap defect. At this point, in the control group, there was a preponderance of soft tissue reactions at seven and 15 days after surgery. This reaction consisted of a mixture of hematoma due to severe haemorrhage and granulation tissue formation. However, in the late period, at 30 days, the healing processes appeared with small amounts of new woven bone trabeculae present only on one side of the defect.

In this manuscript, the outcome indicated the formation of immature woven bone that started appearing 15 days after surgery, which was remodelled later to well-developed mature woven bone in the PRF and CSHA. However, the maturation of the bone was significantly higher in the PRF group than in the CSHA group. These differences were related to growth factors within the PRF matrix that can differentiate the MSC into active osteoblasts, stimulate the production of further growth factors from surrounding blood vessels, and promote the osteogenesis process (Sadek et al., 2023). PRF results agree with the previous studies that concluded that bone tissue improves with the use of PRF when used in mandibular surgery (Sharma et al., 2020).

After seven days in all groups, new bone formation was not observed during histopathological observation. However, new bone formation began at 15 days in all groups except the control group. The control group was filled with fibrous connective tissue with minimal bony fragment formation. In the CSHA group, calcium and phosphate ions were released into the surrounding tissue, which helped regulate the functions of osteoblasts. This process created a local oversaturation of ions, providing more binding sites for cell receptors, which in turn assisted in the adsorption and retention of circulating osteogenic factors like BMPs. These factors ultimately contributed to osteogenesis. (Polini et al., 2011). Therefore, the histopathological section of the CSHA group showed a large number of osteoblast cells, especially in the late period.

In the CSHA group, the histopathological section demonstrated a progressive development of new bone with an ossification matrix (Bigham et al., 2008). The scaffold's disintegration aids bone regeneration and remodelling by providing a favourable environment for osteoblast differentiation and growth factor production. In the CSHA group, we observed that new bone development occurred progressively. After 15 days, an active, mineralized matrix rich in osteoblast cells started to form. This tissue comprised spicules of woven bone, which were lined by osteoblasts. The spaces between spicules contained loosely arranged stromal and hemopoietic cells. Recent studies suggest that the newly formed bone initiates after implanting the material into the defect site. Gradual degradation by chemical dissolution of ions and cell absorption occurs after implantation in the bone defect. Finally, the newly formed bone tissue replaces the degraded material (Jasmine, and Krishnamoorthy, 2022).

The expression mechanisms of ALP are complex, as it plays a critical role in hard tissues such as bone. There are four types of bone tissue expression, namely intestinal ALP, placental ALP, germ cell ALP, and liver/bone/kidney (L, B, and K) ALP, which is called tissue nonspecific alkaline phosphatase (Sterner et al., 2018). Alkaline phosphatase is an indicator of progenitor or maturing osteoblasts (Naji et al., 2022). Positive alkaline phosphatase immunostaining was observed in some osteoblasts that were lining the trabecular bone. Additionally, during the maturation of a bone bridge on day 30 after a bone defect, some bone bridge lining cells expressed alkaline phosphatase (Sharma et al., 2014).

In the control group at 30 days PS, the immunohistochemistry results indicated very weak ALP expression related to the granulocytes in the connective tissue. While in the CSHA group, we found a moderately positive expression of ALP activity. These results are considered with another study that proved the ALP function may require large amounts of extracellular calcium and phosphate. Thus, the presence of hydroxyapatite can enhance ALP activity (Xian et al., 2004). Other studies suggested that the positive expression of ALP phosphorylate in the bone defects treated with calcium phosphate-based biomaterials was considered an inductive material for ALP activity (Vimalraj, 2020).

In group PFR, the positive expression of ALP was considered, with another worker demonstrating that the PRF matrix can increase the expression of osteocalcin in osteoblasts, stimulate osteoblast proliferation and finally increase the expression of
ALP (Nugraha et al., 2018), indicating that PRF can promote osteogenic proliferation and differentiation. Consequently, we agree with the previous work that clarified that the PRF matrix has been shown to be highly biocompatible and does not cause cell apoptosis or death (Wang et al., 2018).

CONCLUSION

The use of both fabricated CSHA and prepared PRF in the activation healing process of an induced mandible bone defect and the superiority of the beneficial value of using PRF in the histopathological and immunohistchtery assessment emphasis these results.

Conflicts of interest

All authors declare that they have no conflict of interest.

Acknowledgments

This research was supported by the College of Veterinary Medicine, University of Mosul.

REFERENCES


KALANTAR, A., and KHORAVASH, B., 2006. Repair of osseous defects is the mandible area. Critical Size Defects for Bone Regeneration Experiments in the Dog Mandible: A


Impact of Fabricated Coral Shell Hydroxyapatite ……


